CYCLIZATION REACTIONS OF 4-(3'-BUTENYL)AZETIDIN-2-ONE A ROUTE TO THE CARBOPENAM RING SYSTEM Tetsuo Aida, Richard Legault, Denise Dugat and Tony Durst Department of Chemistry, University of Ottawa Ottawa, Canada, K1N 9B4

<u>ABSTRACT</u>: Cyclization of 4-(3'-butenyl)azetidin-2-one, <u>2</u> initiated by electrophilic reagents such as I₂, Hg(OAc)₂ results in the formation of bicyclic β -lactams having the carbopenam ring skeleton. Reaction of <u>2</u> with Br₂ results in simple addition of Br₂ to the double bond, while PhSBr gives a mixture of cyclization and addition products.

The recent discovery of the potent antibiotic thienamycin $\underline{1}^{1}$ has prompted us to search for an efficient synthesis of bicyclic β -lactams having the thienamycin ring skeleton which might be of value in the synthesis of $\underline{1}$, dihydro $\underline{1}$, or derivatives thereof. In this communication we report initial results in our study.

HQ, H H $CH_3 = C' + 1$ H O S $CH_2 CH_2 NH_3 = 1$, thienamycin CO_2

The title monocyclic β -lactam <u>2</u> was considered to be a key starting material since cyclization initiated by an electrophilic reagent as outlined below would lead to the carbo-penam ring system 5 containing a potential carboxylic acid group at C-3.

Compound $2^{2,3}$ was obtained in 75% yield via a 14 day room-temperature reaction between chloro-sulfonyl isocyanate and 1,5-hexadiene in CH₂Cl₂ containing anhydrous Na₂CO₃, followed by reduction of the intermediate N-chlorosulfonyl β -lactam with Na₂S₂O₃.⁴

Reaction of <u>2</u> with Br_2 or pyridinium bromide perbromide in CH_2CI_2 at 0° or at -78°, or in water-methanol at 0-25° gave only the 1,2-adduct <u>4</u> $a^{2,5}$. Presumably Br is a better nucleo-phile than the internal amide nitrogen in the trapping of the bromonium ion in <u>3</u>.

In contrast, reaction of 2 with I₂ in CH_2CI_2 containing anhydrous Na_2CO_3 afforded in 62% isolated yield the bicyclic iodide $\underline{5a} (X-I)^2$. The structure assignment of $\underline{5a}$ was based on its i.r. spectrum (1760 cm⁻¹); ¹H nmr and ¹³C nmr⁶. The latter was particularly informative, showing only seven signals including one at $\delta = 4.4$ which is typical of a CH_2I carbon⁷. Interestingly, only one isomer appears to be formed in this cyclization as judged by the nmr

spectra of both the crude and purified products.

Cyclization of 2 to 5b(X = SPh) was also observed, albeit to only a small extent, using PhSBr as the electrophilic reagent. In this reaction, the Markownikoff addition product 4b, (X=Br, Y=SPh) was obtained as the major product (80%). Two cyclization products were also obtained. The more polar one, isolated in 10% yield was assigned the structure 5b, since it was identical to the product obtained in 90% yield from the reaction of 5a with LiSPh in THF⁸. The second cyclization product appeared to be an isomeric mixture of a 4,6-fused ring system; its structure has not been unambiguously established.

Other phenylsulfenyl halides gave even smaller amounts of cyclization products on reaction with $\underline{2}$. For example, PhSCl and $\underline{2}$ when reacted in CH₂Cl₂ at -78°, gave almost exclusively the anti-Markownikoff product 4c, while PhSI generated in situ from PhSSPh and I2 afforded a mixture of products consisting of N-phenylsulfenyl-3(3'-butenyl)azetidin-2-one, the bicyclic sulfide 5b and the iodide 5a in a 65:12:23 ratio.

Efficient cyclization of $\underline{2}$ to $\underline{5}c$ occurred with Hg(OAc)₂ in either THF-H₂O mixtures or in CDCl₃ solution. The organomercurial, obtained in virtually quantitative yield was characterized by its 1 H and 13 C spectra and reduction to <u>6</u> (75% overall) upon treatment with NaBH₄. Compound <u>6</u> was also obtained as a single diastereomer which had a proton nmr identical to the product obtained by Rosenblum and co-workers⁹ from the oxidative cyclization of the iron carbonyl complex <u>7</u>.

Further work on the cyclization of 2 to useful bicyclic systems, and additional modifications of 5 will be described in a full paper.

Acknowledgement: The financial support of NSERC (Canada) and Bristol Laboratories (Syracuse) is gratefully acknowledged.

REFERENCES

- (a). G. Albers-Schönberg, B.H. Arison, O.D. Hensens, J. Hirshfield, K. Hoogsteen, E. Kaczka, R.E. Rhodes, J.S. Kahan, F.M. Kahan, R.W. Ratcliffe, E. Walton, L.J. Luswinkle, R.B. Morin and B.G. Christensen, J. Amer. Chem. Soc., <u>100</u>, 6491 (1978); (b) D.B.R. Johnson, S.M. Schmitt, F.A. Bouffard and B.G. Christensen, J. Amer. Chem. Soc., <u>100</u>, 313 (1978). All new compounds were characterized by m.s. and/or analysis. Infrared and nmr data were 1.
- 2.
- All new compounds were characterized by m.s. and/or analysis. Infrared and nmr data were also in agreement with the proposed structures. Nmr: ¹H; 1.5-2.4(m,4H), 2.57(ddd,J=12,2,1 Hz), 3.10(ddd, J=12,4,2 Hz), 3.4-3.5(m,1H), 4.8-6.3(m,3H), 7.2(bs,NH). ¹³C; 30.6, 34.6, 43,4, 47,8, 115.5, 137.3, 168.6 Ir; 1745 cm⁻¹. b.p. 107-109° (0.35 Torr). T. Durst and M.J. O'Sullivan, J. Org. Chem., <u>35</u>, 2043 (1970). Nmr: ¹H; 1.6-2.4(m,4H), 2.66(dd,J=12, 2 Hz), 3.16(ddd, J=12,4,2 Hz), 3.5-4.0(m, 3H), 4.1-4.4 (m, 1H), 7.5-7.9(bs, NH). ¹³C; 32.6, 32.7, 35.8, 43.5, 47.3 and 47.4, 51.5 and 51.6 167.9. M⁺ = 265. Nmr: ¹H; 1.5-2.5(m, 4H), 2.63(dd,J=12,2 Hz), 3.00(dd,J=12,4 Hz), 3.0-4.1(m,4H). ¹³C: 4.4, 29.5,27.6 42.8,53.1, 62.8, 167.7. Carbon-13 N.M.R. Spectroscopy, J.B. Stothers, Academic Press, N.Y. 1972 Ch. 5. Nmr: ¹C(non-aromatic peaks); 29.5,34.7,36.1,42.3,52.5,60.9,174.3. Ir. 1765 cm⁻¹. P.K. Wong, M. Madhavarao, D.F. Marten and M. Rosenblum, J. Amer. Chem. Soc., <u>99</u>, 2823, (1977), and privatecommunication from Prof. Rosenblum who assigned the <u>exo</u>-configuration to this compound. 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9. to this compound.